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ABSTRACT 

 

Influence of Season and Sex on Terrapene c. carolina (Eastern Box Turtle) 

Movements: An Observation of a Population in West Virginia 

Nathalie Caroline Aall 

 

Environmental conditions influence box turtle movements on multiple temporal 

scales as they navigate their home ranges. This study focuses on the impacts of seasonal 

shift and sex on straight-line distances traveled, movements along elevations, and home 

range sizes in the Eastern Box Turtle, Terrapene c. carolina. Radio telemetry was used to 

track nine T. c. carolina (5 males; 4 females) from May to October 2010 at Beech Fork 

State Park in Wayne County, West Virginia. Turtles were tracked once a day at two-day 

intervals. At each turtle location, microhabitat variables recorded were relative humidity, 

soil and ground surface temperature, canopy and shrub cover, and substrate type. Results 

showed seasonal influence (P<0.05) on both home range sizes and distances traveled 

with no apparent differences between sexes (P>0.05). Movements along elevations were 

significantly different between sexes (P=0.006) and not strongly influenced by 

seasonality. 
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BACKGROUND 

 

 

TAXONOMY AND DISTRIBUTION 

 

 

The Eastern Box Turtle is in the genus Terrapene, family Emydidae. This genus 

has four species which are endemic to North America including Terrapene ornata 

(Ornate and Desert Box Turtle), T. nelsoni (Spotted Box Turtle), T. coahuila (Coahuilan 

Box Turtle), and T. carolina (Eastern Box Turtle). There are currently four subspecies 

recognized in T. carolina: T. c. carolina (Eastern Box Turtle), T. c. bauri (Florida Box 

Turtle), T. c. major (Gulf Coast Box Turtle), and T. c. triunguis (Three-Toed Box Turtle). 

In the United States, T. carolina ranges from Florida north to New Hampshire and west 

to Texas. The range of T. c. carolina is the largest of the subspecies and overlaps with 

other T. carolina subspecies (Minx, 1996). It is also the most northern of the subspecies 

as its range extends into New Hampshire and Michigan, west to Illinois, and south into 

Georgia. Terrapene c. carolina is the only box turtle found in West Virginia. Green and 

Pauley (1987) defined the etymology of Terrapene as originating from an Algonquin 

Indian word meaning turtle, while the species name carolina is named after the 

Carolinas. The nomenclature of T. c. carolina is shown in the following list. 
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                                                     Kingdom       Animalia 

                                                     Phylum         Chordata 

                                                     Subphylum   Vertebrata 

                                                     Superclass     Tetrapoda 

                                                     Class              Reptilia 

                                                     Subclass        Anapsida 

                                                     Order            Testudines 

                                                     Suborder      Cryptodira 

                                                     Family           Emydidae 

                                                     Genus            Terrapene 

                                                     Species          carolina 

                                                     Subspecies    carolina 

 

 

 

 

 
 

Figure 1. Distribution of the Eastern Box Turtle, Terrapene c. carolina, in the United 

States. Map design by the author. 
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SPECIES DESCRIPTION AND NATURAL HISTORY 

 

The Eastern Box Turtle, Terrapene carolina, is the only true terrestrial turtle in 

the northeastern United States (Hulse et al., 2001). Although typically diurnal, during the 

peak of the summer, particularly in populations residing in the southern extent of their 

range, box turtles are crepuscular and bimodal, active only at dawn and dusk (Legler, 

1960; Nieuwolt, 1996; Dodd, 2001; Converse and Savidge, 2003).  

Adult T. c. carolina have a domed carapace, or dorsal shell, with a slight mid-

dorsal keel. Juveniles exhibit a much stronger keel due to their growing shell. The 

carapace is dark brown in color with variable patterns of yellow, brown, and orange 

(Figure 2). Overall coloration is usually more intense in adult males as their head, neck, 

and legs can have strong yellow, orange, and red markings. Maximum adult carapace 

length for both males and females is around 20cm. The plastron, or ventral shell, is a 

sexually dimorphic characteristic; females have a reasonably flat plastron, whereas males 

exhibit a more concave plastron which aids in mounting the female’s carapace during 

copulation. An additional sexually dimorphic feature, although less reliable due to 

variation, is iris coloration (Dodd, 2001). Males typically have red pigment compared to 

the browner coloration often seen in females. 

The vernacular name, box turtle, is appropriately assigned to the species due to a 

hinge located on their plastron with which they can completely close their shell. This 

allows them to encase their limbs for protection from predators. Juveniles do not develop 

a hinge until they reach the sub-adult life stage. This delay in their hinge development, in 

conjunction with their underdeveloped and more cartilaginous shells, makes them more 

susceptible to predation. Common predators of box turtles are raccoons, opossums, 
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coyotes, skunks, snakes, and ants. An average life span is approximately 50 years, but 

individuals have been known to live up to 100 years.  

Terrapene c. carolina are often associated with woodland habitats such as 

deciduous, mesic forests as well as meadows and marshes (Schwartz and Schwartz, 1974; 

Ernst et al., 1994; Dodd, 2001). Box turtles enter a dormant state that begins in late fall 

and ends in early spring (Dodd, 2001). Following this dormancy, they emerge from 

burrows to begin mating activities such as the mate search (Ewing, 1933; Legler, 1960). 

Peaks in mating activity have been associated with times immediately prior to and after 

winter dormancy (Ewing, 1933; Legler, 1960). Some box turtle populations are reported 

to mate mainly in the spring (Allard, 1935; Legler, 1960; Dodd, 2001). Other populations 

have exhibited mating behavior throughout the active season (Williams and Parker, 

1987), but this may vary by locality and latitude (Budishak et al., 2006). The act of mate 

detection for box turtles is not fully understood. Previous research suggests that they 

stumble upon a mate at random and proceed with the courting ritual (Dodd, 2001). Males 

may be more proactive in the search for a mate due to their observed searching behavior 

of scent tracking (Evans, 1953; Stickel, 1978). Male spermatogenesis (the development 

of sperm cells) occurs from July to October while female ovulation occurs at least twice a 

year, once mid-May and once mid-June. Repetitive ovulation allows females to lay 

several clutches within one season (Gibbons, 1968; Congello, 1978; Messinger and 

Patton, 1995). 

Although annual mate detection and courtship are essential for increasing gene 

flow in a population, they are not essential for a female to produce fertilized eggs 

immediately. Female box turtles have shown arrested development within their oviducts, 



5 

 

allowing them to store sperm for extended periods of time (Dodd, 2001). Ewing (1943) 

witnessed female turtles producing fertilized eggs seasonally for four years with no male 

contact.  

There are four phases to egg deposition including nest-site selection, digging, egg 

deposition, and concealment (Congello, 1978). Nest-site selection usually occurs from 

May to mid-July followed by egg deposition (Stickel, 1950; Congello, 1978; Ewing, 

1933). In a quest to select suitable nest sites, box turtles will traverse their home ranges.  

Box turtles are known to have set home ranges although some individuals have 

been observed to display transient behavior, repeatedly moving through habitats with no 

indication of a set home range (Kiester et al., 1982; Dodd, 2001). The non-territorial 

nature of box turtles results in home ranges of individuals within a population to overlap, 

particularly if the habitat is favorable (Stickel, 1950; Nieuwolt, 1996). Box turtle 

movements through home ranges are influenced by a combination of factors. Some 

factors involved in habitat utilization include physiological needs of the turtle, which are 

met in varying environmental conditions through thermoregulation and mating activity. 

How these factors influence T. c. carolina movements through their home ranges will be 

explored in this study. 
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Figure 2. Top: Male T. c. carolina with transmitter. Middle: Female T. c. carolina. 

Bottom: Male T. c. carolina burrowing under shrub layer. Photographs by author.  
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INTRODUCTION 

 

Mating and nesting behavior, home range utilization, and physiological needs 

have all been shown to play a role in box turtle movements and microhabitat preferences 

(Dodd, 2001). Box turtles are terrestrial, ectothermic reptiles that move throughout 

different microhabitats as a way to behaviorally thermoregulate their body temperature, 

prevent desiccation, search for mates, forage for food, and select nest-site locations 

(Sturbaum, 1981; Dodd, 2001; Amaral et al., 2002). Box turtle body temperature is 

shown to be highly correlated with ambient temperatures (Adams et al., 1989) making it 

important for them to migrate toward microhabitats that will allow them to achieve an 

optimal body temperature. Movement patterns have been shown to vary seasonally 

(Reagan, 1974), however, seasonal variation of box turtle movement patterns are 

understudied. Within the home range and habitat of a box turtle there are available 

microhabitats that are utilized periodically. Humidity, temperature, and topography likely 

influence how they selectively migrate between these microhabitats. It is, therefore, 

important to investigate each of these components relative to a box turtle’s movements.  

Accurate information on variability in turtle movements, both between seasons 

and sexes, is necessary to increase our understanding of T. c. carolina natural history and 

habitat preferences. This study aims to provide knowledge about the movements of a 

population of T. c. carolina at Beech Fork State Park, West Virginia. Recent declines in 

box turtle populations along their entire range emphasize the need for effective mitigation 

plans for box turtle conservation (Swarth, 2005). If box turtle populations are to continue 

to persist across their range in the future, studies of their ecology and natural history are 
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needed to better inform population-based management plans that will be effective in the 

long-term.  

The purpose of this study was to observe a sample of a population of T. c. 

carolina at Beech Fork State Park in Wayne County to gather data on movements in 

relation to individual home range sizes, movements along elevations, and straight-line 

distances traveled. More specifically, this study focused on how seasonality and sex 

impact T. c. carolina movements. This study was done in Wayne County, West Virginia 

(Figure 3) where T. c. carolina is listed as common (Uetz and Hallerman, 2011). 

Furthermore, previous literature guided my decision to collect additional data on box 

turtle microhabitats, which are included herein as supplemental to my study and will be 

included in the discussion. These data augment the relevancy of this study and how my 

study population equates to others across the species’ range.  

This study assessed whether distances traveled, movements along elevational 

gradients, and home range size are influenced by sex and/or season. I hypothesized that 

(1) box turtle movements and home range size would decrease in the fall due to lower 

ambient temperatures, and (2) seasonal distances traveled would vary between sexes due 

to differing reproductive behaviors, and (3) box turtle movement would not vary across 

elevational gradients.   
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Figure 3. Map of West Virginia highlighting county in yellow and study area in pink. 

Map design by author. 
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MATERIALS AND METHODS 

 

STUDY SITE 

 

The study site was located in Beech Fork State Park (BFSP; 38˚18’19”N, 

82˚20’21’’W) adjacent to the campgrounds in Barboursville, Wayne County, West 

Virginia (Figure 3). Turtles were tracked across a 93,800 m² area with a 680m diameter. 

The site was selected based on the high box turtle population density and diverse 

topography. Elevation in the study site ranged from 181m to 263m including two 

mountain ridges (Figure 4). This study employed radio telemetry, whereby a transmitter 

is attached to the carapace allowing locations of the turtles to be pinpointed and adjacent 

environmental measurements to be taken. Radio telemetry allows for a wealth of data 

collection with regard to individual movements throughout a landscape and within a 

population (Forsythe et al., 2004; Iglay et al., 2006).  

Initial sampling and the adherence of transmitters were done in the lower 

elevation range (181-190m) of the study site (Figure 4). Weather data for Wayne County, 

West Virginia were retrieved from AgroClimatic Information Service. The maximum to 

minimum ambient air temperatures recorded were 29.7 ˚C in the summer and 11˚C in the 

fall. Mean temperatures were 22˚C, 26˚C, 18˚C for the spring, summer, and fall, 

respectively. Total precipitation for the study period was 66cm and 22cm, 36cm, and 8cm 

during spring, summer, and fall in 2010. Mean precipitation was highest in the summer 

(0.88cm) and lowest in the fall (0.21cm). Due to high precipitation from July 19
th

-26
th 

(20cm), extreme flooding occurred at the study site. Flooding filled the seasonally dry 
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stream bed causing turtles to be impeded from crossing the stream or traversing some 

lower elevations.  

Habitat was characterized by mesophytic eastern deciduous hardwood forest and 

fragmented by two frequently traveled trails, a seasonally dry stream bed, and open fields 

cleared and mowed for recreational use (Figure 5). Common overstory vegetation at site 

comprised of mixed pine (Pinus sp.) and hardwood including maples (Acer sp.), 

American beech (Fagus grandifolia), hickory (Carya sp.), tulip poplar (Liriodendron 

tulipifera), white oak (Quercus alba), and sassafras (Sassafras sp.).  Some dominant 

understory vegetation during the sampling period included autumn-olive (Elaeagnus 

umbellata), honeysuckle (Lonicera sp.), Japanese stiltgrass (Microstegium vimineum), 

and a variety of fern species. 

 

 

 

 

Figure 4. Google Earth topography map of study site at Beech Fork State Park. Area 

outlined in red represents the area in which box turtles were initially tagged in May 2010. 
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Figure 5. Map of study site at Beech Fork State Park. Map design by author. 

 

 

 

 

 

 

 

 

 

 

 



13 

 

FIELD WORK 

 

Ten SOPR-2190 model transmitters (3.0x1.3x0.8cm), a three-prong Yagi antenna, 

and a TRX-2000 receiver were purchased from Wildlife Materials, Murphysboro, Illinois 

in March 2010. The dark green transmitters each weighed 5-6g, which was less than three 

percent of each turtle’s body mass, and had a 17cm long flexible antenna (Figure 2). Four 

adult gravid female (4,8,10,11) and six adult male (1,3,5,6,7,9) T. c. carolina, identified 

by their respective assigned numbers, were tagged with transmitters in mid-May of 2010 

and tracked until mid-October 2010 at BFSP. Sampled turtles were all classified as adults 

because carapace length exceeded 11cm and they exhibited well-defined sex 

characteristics (Legler, 1960; Converse, 1999). Individual turtle measurements were 

conducted in the field in concordance with Legler (1960) for plastron and carapace 

lengths, hinge width, and body mass. Transmitters were attached with five-minute epoxy 

to the right front costal scute of the carapace after a light cleaning with acetone. This 

positioning decreased transmitter interference with mating and burrowing.  

Each individual turtle (N=10) was tracked once between 10 am-2 pm at two-day 

intervals. Waypoints were taken with a Garmin GPS with accuracy up to 5 m. Once a 

turtle was located, ground surface temperature and humidity measurements were taken 

with a thermo-hygrometer within a 10 cm radius of the turtle’s position. A thermometer 

was also inserted into the soil at 5 cm depth within a 10 cm radius of the turtle to measure 

soil temperature. The close proximity at which measurements were taken in relation to 

the turtle allowed for more accurate descriptions of locations. A spherical densitometer 

was used to estimate canopy cover at arm’s length and in kneeling position over each 

turtle’s carapace. Microhabitat characteristics at each location were categorically noted 
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for type of substrate and presence of shrub cover. Transmitters were removed mid-

October due to battery limitations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



15 

 

DATA ANALYSIS 

 

Box turtle home range area, elevation, and straight-line distances traveled were 

analyzed using SPSS (2006). Several univariate analyses of variance (ANOVA) and 

Tukey Post-hoc tests (α=0.05) were run to determine significant differences between sex 

and season. Seasons were selected in concordance with Rossell et al. (2006): spring (May 

15
th

 –June 30
th

), summer (July 2
nd

 –August 29
th

), and fall (September 1
st
 –October 15

th
). 

Results of ANOVAs are located in Appendix I for further reference. 

ANOVA’s are semi-robust for data with deviations from normal distributions 

(Zar, 1984). Data for the parameters analyzed had relatively normal distributions, which 

was determined using the Shapiro Wilke Test. Data for four male (3, 5, 7, 9) and four 

female box turtles (4, 8, 10, 11) were analyzed. Male box turtle 6 was lost mid-June and 

male turtle 1 was lost mid-September due to transmitter failures; therefore, the data 

collected for these turtles were not included in the analysis.  

Distance 

Mean straight-line distance traveled was calculated in meters by how much a 

turtle moved from one location to the next within a two-day time period within season 

and between sexes. A square root of the mean transformation was applied to normalize 

the data. 

Elevation 

Elevation was determined by overlaying waypoint data into Google Earth. Mean 

elevation preference for males and females over time was calculated by taking the 

average elevation at which turtles were found each season. Additionally, mean elevations 
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were compared between sexes within each season with a univariate ANOVA and Tukey 

Post-hoc analyses. 

Home range 

Turtle waypoints were entered into ArcGIS 9.3 and mapped in ArcMap. Total 

home range size for each turtle was determined using the minimum convex polygon 

method in which outer waypoints are connected to form a polygon with no internal angle 

that exceeds 180 degrees and contains all waypoints (Mohr, 1947; Burgman and Fox, 

2003). To calculate seasonal home range size, waypoints for each turtle were categorized 

by season. Home ranges were compared between four females and four males. Male box 

turtle 9 showed transient behavior; therefore, home range size data for this individual 

were not analyzed and male box turtle 1’s data were used instead. 

Principle Component Analysis 

Principle correspondence analysis (PCA) was done to visualize general trends in 

the data. The PCA was adapted to look at the interrelatedness of multiple parameters 

(relative humidity, ground surface and soil temperature, canopy cover, elevation and 

distance traveled) with respect to individual turtles across seasons. Each point represents 

an individual turtle’s microhabitat utilization in each season. Proximity of points signifies 

similarity between turtles within season according to their proximity to the parameters 

measured. 

Microhabitat Utilization 

Microhabitat analysis was conducted at all locations of tagged turtles over the 

course of the study. Figures and tables for microhabitat data are located in Appendix II 

for further reference. Relative humidity and soil and ground surface temperatures at turtle 
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microhabitats were analyzed for seasonal variation through an ANOVA and Tukey Post-

hoc analysis. Shrub layer cover was recorded as present (1) or not present (0) for each 

turtle’s location if the vegetation cover greater than 0.25m and less than 1m in height 

from the turtle’s carapace. Downed trees, thickets, dense branches, tall vegetation, and 

bushes were ruled as shrub layer cover.  

Substrate on which the turtles were located was categorized into three variables: 

leaf litter, bare soil, and dense vegetation. Percent preference for a certain substrate was 

calculated by counting the number of turtles found on a substrate category in a season 

and dividing by the total turtle collections within that season. No trend in substrate 

selection was witnessed between sexes or across seasons; therefore, it was excluded from 

the discussion. 
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RESULTS  

 

DISTANCE TRAVELED 

 

Straight-line distances traveled by turtles varied significantly across seasons (F = 

4.97, P = 0.019; Table 2). Turtles traveled significantly greater mean straight-line 

distances in the spring compared to the fall (P = 0.015; Figure 6). One female, BT10, was 

observed traveling a great distance from her early spring home range over two mountain 

ridges in late June and returning early to mid-July. No similar behavior was witnessed in 

the other females. No significant differences in mean straight-line distances traveled were 

observed between sexes. 

 

Figure 6. Mean ± 1SE straight-line distances (√meters) traveled by male and female T. c. 

carolina across seasons. Ɨ*  
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ELEVATION 

 

Turtles were located between 181- 227m in the study site. A male was located at 

227m in the summer, marking the highest elevation at which a turtle was tracked. 

Throughout the study males were found at higher mean elevations than females (F=9.78, 

P=0.006; Figure 7). Unlike the other parameters, no significant seasonal differences were 

witnessed for elevation preference (P>0.05; Table 2). Males and females did not 

significantly differ in mean elevation at which they were located within any season 

(P>0.05); however, the greatest difference was observed between sexes in the fall (P = 

0.057; Table 3).  

 

 
Figure 7. Mean ± 1SE elevation (meters) for male and female T. c. carolina. Ɨ* 
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HOME RANGE 

 

No significant interaction was witnessed between sex and season (Table 2). There 

was a significant difference between seasons for home range size (F=13.8, P = 0.000; 

Figure 8). Mean spring home range size was significantly smaller than mean home range 

size in the summer for turtles (P = 0.005). Mean summer home range size was also 

significantly larger compared to fall (P = 0.000), but there was no difference between 

spring and fall home range sizes. Home ranges were roughly elliptical in shape (Figure 

9). Males had a smaller mean home range (12,012m²; Figure 10) compared to females 

(18,340m²; Figure 11) across the study, however, sex did not play significant role in 

determining home range size (P>0.05). 

 
Figure 8. Mean ±1SE home range size (meters²) for male and female T. c. carolina across 

seasons. Ɨ* 
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Figure 9. Five male (above: 1, 3, 5, 7, 9) and four female (below: 4,8,10,11) T. c. 

carolina home ranges outlined with a minimum convex polygon and overlain on an aerial 

view of the study site. Like colors represent locations of individual box turtles. Male box 

turtle 9 was characterized as transient. 
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Figure 10. Four male T. c. carolina (1,3,5,7) seasonal (spring = yellow, summer = red, 

fall = blue) home ranges outlined with a minimum convex polygon and overlain on an 

aerial view of the study site. 
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Figure 11. Four female T. c. carolina (4,8,10,11) seasonal (spring = yellow, summer = 

red, fall = blue) home ranges outlined with a minimum convex polygon and overlain on 

an aerial view of the study site. 
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PRINCIPLE COMPONENT ANALYSIS 

 

 

Figure 12. Principle component analysis (PCA) of seasonal (spring = yellow, summer = 

red, fall = blue) parameters at T. c. carolina utilized microhabitats between sexes (squares 

= males; circles = females) for relative humidity (RH), ground surface (GST) and soil 

(ST) temperature, square root of distance traveled in meters (SqrD), elevation (E), and 

canopy cover (CC). Eigenvalue shows that the PCA accounts for 87.5% of variance for 

both axes. 
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DISCUSSION 

 

DISTANCE TRAVELED 

 

Active box turtles are shown to move anywhere from a meter to hundreds of 

meters within a day, where seasonal shift accounts for some of this variation (Stickel, 

1950; Penick et al., 2002). Penick et al. (2002) saw that turtles moved on average less 

than a meter a day during the winter and six to nine meters a day during the active 

season, spring to early fall, respectively. Whereas seasonal shift is one factor that dictates 

activity in box turtles, other elements have also been suggested to influence box turtle 

patterns of movement.  

A potential predictor for the amount of straight-line distances moved by box 

turtles through their habitats is sex, as posited by previous studies (Stickel, 1950; 

Gibbons, 1968; Strang, 1983; Penick et al., 2002). Penick et al. (2002) found that females 

have a tendency to travel shorter overall distances within each season compared to males. 

Additionally, Gibbons (1968) witnessed females traveling greater distances in the 

summer, potentially moving from their preferred foraging grounds to seek out suitable 

nest sites. Males and juveniles remained within the same general areas for longer periods.  

Guided by these findings, I hypothesized that, due to the different reproductive 

behaviors that are prompted by seasonal cues, each sex would exhibit seasonal variation 

in mean distances traveled. That is, females would travel greater distances during 

oviposition to select for suitable nest sites in the summer. Males, who actively seek mates 

(Muegel and Claussen, 1994), would instead travel greater distances in the spring. The 

results of this study rejected my hypothesis, as no significant variation for straight-line 

distances traveled was observed between males and females.  Similar results were 
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recorded by Donaldson and Echternacht (2005). One possible explanation of these results 

is that mate searching and nest-site selection activities overlap in some populations 

causing a lack of differences to be observed between sexes in the amount of distances 

they traveled. Attributing seasonal movement variations solely to reproductive behaviors 

is difficult, as variations in many factors such as home range features, climate 

characteristics, and annual precipitation all likely influence the time line of reproductive 

behaviors.  

Whereas no correlation was found in distances traveled between sexes across 

seasons, the data indicate a significant seasonal variation in the amount of overall 

straight-line distances box turtles traveled. Mean straight-line distance traveled by box 

turtles decreased significantly in the fall compared to the spring (Figure 6). 

Simultaneously, relative humidity and soil and ground surface temperatures at utilized 

microhabitats decreased significantly in the fall from the spring and summer seasons 

(Figure 12). These observed environmental patterns are important to note as high relative 

humidity encourages higher levels of box turtle activity (Rossell et al., 2006). Therefore, 

the seasonal drop in relative humidity experienced in the fall potentially triggered shorter 

bouts of activity during this season, such as those recorded in my study population. As 

temperature and moisture dropped in the fall, the risk of desiccation would have 

increased and a need to up-thermoregulate body temperature may have caused turtles to 

remain within forms. Forms are defined as depressions in the soil in which a turtle 

remains inactive for a period of time from one day to several weeks. Form locations are 

said to shift depending on seasons (Stickel, 1950; Reagan, 1974; Dodd, 2001), and they 

are utilized for longer consecutive periods during the fall and during cooler weather 
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fronts (Reagan, 1974). They are located in areas with high humidity as a means to 

decrease evaporative water loss and desiccation (Reagan, 1974; Ernst et al., 1994; Rossell 

et al., 2006). During the fall, box turtles may have traveled shorter distances to select new 

form sites or made shorter excursions, returning to previous form sites. 

Greater distances can be covered by box turtles that exhibit optimal body 

temperatures (Adams et al., 1989). As ambient and microhabitat temperatures decreased, 

turtles were observed traveling shorter mean distances. Achieving optimal internal 

temperatures during the active and mating season allows turtles to maximize their 

reproductive output, lessen energy expenditure, and decrease their mortality rate (Dodd, 

2001). Box turtles reach optimum body temperatures through behavioral 

thermoregulation; they select microhabitats that allow them to achieve an optimum body 

temperature in order to remain active for longer periods during unfavorable conditions 

(Nieuwolt, 1996). Lower surface temperatures are generally preferred by turtles during 

high ambient temperatures and low precipitation as a means to dissipate heat (Rossell et 

al., 2006). During high ambient temperatures, box turtles select cooler microhabitats for 

forms to lower body temperatures and lessen energy expenditure. This behavioral 

thermoregulation allows turtles to decrease the time of inactivity and refocus on activities 

necessary for survival, feeding, and reproduction (Donaldson and Echternacht, 2005).  

Behavioral thermoregulation governs box turtle movements, particularly in 

relation to their activity levels and the resulting seasonal distances traveled throughout 

their habitats. Combining the analysis of box turtle microhabitat data with seasonal 

weather shifts while examining more acute differences between sexes in reproductive 
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behaviors, specifically, time lines of mate searching and nest-site selection within certain 

populations, is essential towards furthering our understanding of box turtle movements. 
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Figure 13. Above: Slight incline at higher elevations of the southeast facing slope at 

study site. Below: Flatter grade and low elevation at study site on the southeast of the 

adjacent mountain ridge. 
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Figure 14. Higher elevation on southeast aspect of mountain ridge in October 2010 at 

study site; note reduced canopy and vegetation cover. 
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ELEVATION 
 

 

It is important to understand the impacts of vertical components within box turtle 

habitats because they influence general box turtle locomotion, distribution, and dispersal 

(Muegel and Claussen, 1994). Two mountain ridges at the study site were analyzed as 

vertical components across or adjacent to which box turtles traversed. My hypothesis that 

no differences would be observed in movements across elevational gradients was rejected 

because males were located at significantly higher mean elevations compared to females 

across all seasons (Table 2). Additionally, season did not appear to have an influence on 

turtle elevational preferences.  

Previous studies have investigated movements in relation to slope incline (Stickel, 

1950; Strang, 1983; Muegel and Claussen, 1994). Extreme slope inclines can cause a box 

turtle to deviate from straight-line movement increasing energy expenditure and risk of 

predation (Stickel, 1950; Metcalf and Metcalf, 1970; Carroll and Ehrenfeld, 1978; Strang, 

1983; Muegel and Claussen, 1994). Muegel and Claussen (1994) recorded voluntary 

movements along differently graded slopes and saw that turtles ascended and descended 

easily along a slope of ≤40˚and ≤51˚, respectively. Claussen et al. (2002) found that 

steeper slopes typically decreased box turtle speed of locomotion, in turn affecting box 

turtle intent to travel across different elevational gradients, and that speed decreased by 

20 to 30 % at a slope of 20˚ or greater, whereas a slope of greater than 35˚ reduced speed 

by 50 %. In my study, turtles were tagged on the south-eastern slope, which was the less 

steep aspect of the mountain ridge (Figure 4, 5). The difference in slope incline between 

each aspect of the ridge may have limited turtle ascension and descension due to the 
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energy needed to traverse the steeper slope or resulted in avoidance by traveling around 

it.  

Physical attributes of turtles affect energy expenditure and mobility, thus limiting 

their movements along slopes (Muegel and Claussen, 1994). Studies have documented 

that turtles with smaller body masses, small adults and juveniles, traverse steeper slopes 

more effectively, easily ascending and descending ridges compared to individuals with 

larger body masses (Adams et al., 1990). This adaptation is beneficial for juvenile box 

turtle dispersal as well as gene flow. Of the individuals sampled in my population, males 

had an average body mass of 392.5g (range = 340-445g), whereas females averaged 

354.5g (range = 303g-405g). As turtles were tracked only once every two days, it was not 

possible to observe whether the smaller females were able to traverse the higher 

elevations more effectively than larger males. Without further investigation, data herein 

may be biased in terms of males favoring higher mean elevations. According to the idea 

that larger body masses decrease locomotor abilities along slopes, males may have 

remained at higher elevations for longer periods of time due to increased energy 

expenditure resulting from their greater body mass compared to females. Furthermore, 

males would have exhibited greater form establishment behavior at high elevations, 

particularly in the summer during high ambient temperatures. Males utilizing forms more 

frequently at high elevation is supported by the critical thermal maximum theory, which 

states that turtles with greater body masses have lower tolerances to high temperatures 

owing to their lowered critical thermal point, which when reached, can halt movements 

and result in death (Cowles and Bogart, 1944; Hutchison et al., 1966). Males, in 

particular, exhibited frequent burrowing behavior, in which the carapace was completely 
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covered by live/dead vegetation, debris, or leaf litter, in the summer (Figure 2). This 

behavior supports their thermal needs as they select microhabitats that allow them to 

thermoregulate their body temperatures under extreme ambient temperatures (Nieuwolt, 

1996). 

Whereas the data suggest no significant difference across seasons, it is interesting 

to note that males and females were located at their respective highest mean elevation 

during the summer (Figure 7). A previous study witnessed turtles moving toward a water 

source at lower elevations in response to high temperatures and low precipitation 

(Donaldson and Echternacht, 2005). At my study site, precipitation and ambient 

temperatures were highest during the summer, allowing turtles to move farther from the 

water sources by traversing higher elevations at a lowered risk of desiccation. This 

seasonal change in climatic conditions offers a possible explanation as to why both sexes 

selected higher elevations during the summer.  

Parameters at utilized microhabitats for relative humidity and soil and ground 

surface temperatures all followed similar seasonal trends, decreasing in the fall (Table 4). 

Sexes did not differ in their utilization of microhabitats in relation to these parameters. 

Whereas females tended to be found at lower elevations with flatter grades, males were 

found at higher, and usually steeper, elevations, and it is possible that turtles were 

selecting similar microhabitats at higher and lower elevations across seasons. In other 

words, turtles at higher elevations, mainly males, were utilizing microhabitats similar to 

those of turtles at lower elevations, mainly females, and that elevation preference was 

independent of humidity and temperatures at utilized microhabitats. This observation 
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allowed the assumption to be made that other factors, such as reproductive behaviors, 

were acting upon males and females differently.  

Contrary to males, female preference for lower mean elevations during the study 

period can be associated with nest-site selection. Additionally, lower energy expenditure 

and a decreased risk of desiccation at lower elevations are also possible explanations for 

observed box turtle movements. During the mating seasons (spring and early fall) 

females have to limit energy expenditure before oviposition. Gravidity (a female carrying 

eggs) has been associated with behavioral adjustments (Seigel et al., 1987). Preferable 

nest sites are located in either sunny open areas or shadowed areas with limited sunlight 

within wooded areas, edge habitats, and grassy fields (Messinger and Patton, 1987; 

Temple, 1987; Forsythe et al., 2004). Sites free of surface debris, which could interrupt or 

hinder nest excavation, and softer soils are preferable and often found at lower elevations 

(Legler, 1960; Messinger and Patton, 1995).  

In my study site, the mountain ridge adjacent to where turtles were tagged was 

most traversed along the southeast facing aspect (Figure 4). As a result of aspect, the 

angle of incidence increases solar radiation on south-facing slopes (McEwan et al., 2005). 

Therefore, naturally higher temperatures and lower moisture conditions existed on the 

slope that was most frequently traversed by turtles. The drier resulting conditions on this 

slope would have discouraged females from higher elevations along this slope aspect due 

to its lower potential for suitable nest site locations. Higher humidity levels observed at 

lower elevations are linked with nest site locations (Congello, 1978). In conjunction with 

unfavorable conditions for nesting along this slope, traversing the slope incline would 

have unnecessarily increased female energy expenditure, which is essential for 
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reproduction and associated activities. It is important to note that only mean straight-line 

distances or minimum distances traveled between successive locations by turtles were 

measured. It was, therefore, not possible to determine whether females traveled greater 

total distances, such as winding movements, between successive locations to avoid 

vertical barriers or if they traveled directly from one location to the next. 

Examining cover as a means for thermoregulation at microhabitats can provide 

useful insight on the observed elevational trends. Moderate mean canopy cover was 

observed at turtle locations throughout the study (Figure 18), which has been similarly 

noted by other studies (Dodd, 2001; Rossell et al., 2006). The mixed hardwood 

dominance of the study site can account for this trend. Box turtles prefer forested areas, 

particularly during the warmer active season where canopy cover can range from 

relatively moderate to high (Dodd, 2001). Percent canopy cover depends on a number of 

variables such as elevation and seasonal shift. Lower canopy cover was observed in the 

fall at turtle microhabitats (Figure 12). It is important to note that canopy cover increased 

naturally in the summer and slightly decreased in the fall, reducing my ability to infer 

true turtle selectivity for microhabitats with specific canopy cover.  

Males showed a preference towards higher canopy cover (Figure 12) and had a 

higher percent presence of shrub cover at microhabitats than females (Figure 19). Since 

canopy cover was seemingly less at higher elevations in the study site (Figure 13, 14), it 

is suggested that males may have been exhibiting behavioral thermoregulation by 

utilizing areas with higher canopy cover and shrub cover more frequently at higher 

elevations. Rossell et al. (2006) noted in areas where turtles selected for greater canopy 

cover and shrub layer cover, air circulation was decreased, allowing the turtle to dissipate 
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heat more slowly during cooler ambient temperatures. Studies also suggest that presence 

of shrub layer cover ( <1 m above turtle) will decrease net radiation and air circulation at 

ground level, in turn cooling the site during high ambient heat (Plummer, 2003; Rossell et 

al., 2006). The interaction between over- and understory cover to increase 

thermoregulatory potential at microhabitats may explain why males were able to traverse 

higher elevations with lowered risks of desiccation and cooling in the fall and 

overheating in the warmer seasons.  

 Interestingly, females were found at lower elevations and lower canopy covered 

areas than males around the time period that has been shown to correspond with nest-site 

selection and oviposition (spring and late summer; Figure 7, 13). Lower canopy cover 

can increase the number of basking sites in a turtle’s home range and, therefore, improve 

their thermoregulatory potential (Muegel and Claussen, 1994; Blázquez, 1995; Penick et 

al., 2002). Embryonic development and hatchling success have also been positively 

correlated with nest site incubation temperatures causing a selective pressure towards 

areas with lower canopy cover and increased surface temperatures (Blázquez, 1995). 

Therefore, even though canopy cover was naturally higher at lower elevations at the 

study site, female box turtles may have shown a preference toward lower canopy covered 

areas due to preferential nest-site selection and to increase their thermoregulatory 

potential. 

Seasonality was not significantly related to box turtle elevation preferences 

whereas sex showed a significant relationship with box turtle mean elevations. Due to 

similarities witnessed between environmental data at microhabitats utilized by males and 

females, it can be inferred that behavioral differences, specifically reproductive 
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behaviors, between sexes were driving this observed trend. However, in addition to 

differences in reproductive behaviors, it is important to incorporate slope aspect and 

incline and microhabitat cover utilization characteristics into future analyses of box turtle 

movements along elevational gradients. Further investigation into these fields is 

warranted and could shed light on box turtle movements along both horizontal and 

vertical components within their home ranges. 
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HOME RANGE 

 

 

To understand movements of box turtles, knowledge of temporal 

(diurnal/seasonal) and spatial (home range area utilization) movement patterns is 

required. The need to explore, forage, and search for potential mates inspire box turtle 

movements (Stickel, 1950; Dodd, 2001). Due to the temporal variation in the conditions 

that motivate movement, both seasonally and daily, home range usage fluctuates 

(Nieuwolt, 1996). This shift is likely related to habitat quality and seasonal variation 

(Donaldson and Echternacht, 2005). Changes in home range size across seasons and 

between sexes are understudied in box turtle populations (Swarth, 2005; Bernstein et al., 

2007). Further understanding home range utilization in box turtle populations throughout 

their range will better enable effective conservation management plans for this long-lived 

species. For my study population, I hypothesized that home range size, or the area 

utilized within the total home range, would be significantly smaller in the fall. Turtles had 

significantly different sized home ranges across seasons, utilizing the largest area of their 

home range in the summer and the smallest in the fall (Figure 8), supporting my 

hypothesis. 

Reduced home ranges coupled with a reduction in mean distances traveled in the 

fall, suggest box turtle seasonal adjustment of activity levels toward lower ambient 

temperatures and humidity. Box turtles usually enter a dormant state in late fall, as 

changes in microhabitat characteristics signal them to select suitable burrowing sites. 

Burrows are selected as a means of thermoregulation due to increased burrowing 

behavior exhibited during extreme temperatures (Doroff and Keith, 1990). 
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Further results indicate that spring home ranges were significantly smaller than 

summer home ranges (Figure 8; Table 2). Average and total precipitation peaked in the 

summer increasing ambient relative humidity. Previous studies suggest that high moisture 

conditions have more influence on box turtle activity than do variations in temperature 

within a habitat (Reagan, 1974; Dodd, 2001). Thus, turtles may have been actively 

foraging more frequently during the summer months, utilizing a larger part of their home 

range compared to the spring, which had lower precipitation. Seasonal shifts in home 

range utilization have also been related to nearby water sources. Turtles expanded their 

home ranges in the summer to include a temporary pond, reiterating the importance of 

high humidity and moisture levels relative to higher ambient temperatures for box turtle 

movements and habitat utilization (Donaldson and Echternacht, 2005).  

Distances traveled by turtles were not significantly different between spring and 

summer seasons (Figure 6). Although turtles were traveling similar distances between 

spring and summer, they were utilizing a significantly greater area of their home range in 

the summer compared to the spring. Due to higher ambient temperatures, precipitation 

levels, and extended daytime hours during the summer, a bimodal shift in activity may 

have influenced box turtle movements throughout home ranges. Box turtle activity could 

have shifted toward early evening hours increasing evening foraging and exploration 

behavior allowing them to remain within forms during high, mid-day temperatures. This 

bimodal behavior may have resulted from an effort to thermoregulate to more optimal 

body temperatures during high summer temperatures. Although turtles utilized less of 

their home ranges in the spring, yet traveled similar distances, the lower ambient 

temperatures observed within this season allowed them to traverse greater distances 
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during the day within a shorter time compared to the summer. Turtles may have exhibited 

less exploration behavior and, therefore, less home range usage was observed during the 

spring.  

Concurrent with distances traveled within seasons, vertical components (i.e. 

elevational gradients) within a habitat can act as potential barriers limiting home range 

sizes (Stickel, 1950; Strang, 1983). As most turtles were not located on the opposite 

aspect of the first mountain ridge closest to where they were initially tagged, it can be 

assumed that this vertical component coupled with adjacent habitat fragmentation such as 

the dry stream bed, open field, and paved road (Figure 5) limited home range size by 

forming barriers for box turtle movements.   

It is disputed whether or not sex plays a role in determining home range size 

(Stickel, 1950; Doroff and Keith, 1990; Barron, 1996; Cook, 1996; Donaldson and 

Echternacht, 2005). My results indicate that there was no significant difference between 

sexes in their home range sizes (Table 2). Nonetheless, females were observed to have a 

slightly larger mean home range size compared to males. As males were generally located 

at higher elevations, and, therefore, on steeper slopes, their relative home range size 

would have been limited due to the increased energy necessary to traverse habitat at those 

locations. Additionally, limited movements along steeper slopes at higher elevations can 

impinge upon the males’ ability to search for potential mates, forage for food, distribute, 

and expand his home range. Consequently, this impediment on turtle locomotor abilities 

may be why males were observed with lower mean total home range sizes. Females have 

been shown to take short excursions from their home ranges as a means to select suitable 

nest sites (Stickel, 1950). This behavior, coupled with utilizing generally lower elevations 
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and flatter inclines, allowed females to traverse a larger area with less energy 

expenditure, offering an explanation for their slightly larger home range sizes. 

The observed seasonal shift in usage of home ranges from spring to fall suggests 

that ambient environmental changes in connection with thermoregulatory behavior 

govern box turtle home range size. Analyzing home range usage patterns and influencing 

factors is critical to the development of well informed conservation efforts. The analysis 

of this particular population and how sex and season, along with various microhabitat 

variables, influence utilization of home ranges contribute toward our understanding of 

box turtle populations as a whole.  
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IMPLICATIONS FOR CONSERVATION 

 

Box turtle populations are declining across their range in the United States 

(Stickel, 1978; Williams and Parker, 1987; Ernst and Lovich, 2009). Box turtles are at a 

particular risk, due to their low fecundity (Dodd, 1997), longevity (ages ranging from 45 

to 100 years; Stickel, 1978), slow maturation rates, and high rates of hatchling mortality 

(Dodd, 2001). Within turtle populations the loss of adult individuals can be detrimental to 

the population for almost two decades after loss (Congdon et al., 1994). Individual 

mortality, particularly of female adults, can impact a population greatly by decreasing 

potential mates, reproduction, and the addition of new individuals. This individual loss 

increases pressure on maternal nest-site selection to increase hatchling survival of 

remaining females to maintain a stable population. Movements throughout habitats and 

between microhabitats, therefore, become more crucial during the nesting season as 

females search for nest sites with optimal substrate, incubation temperatures, and high 

concealment.  

Box turtle selection of microhabitat characteristics for nest site locations and 

thermoregulation require more in depth analyses. In studies involving microhabitat 

selection, as in Rossell et al. (1996), box turtle selected microhabitats are paired with 

randomly selected adjacent microhabitat locations. This data collection allowed 

researchers to make pair-wise comparisons to determine whether turtles selected for 

specific characteristics within microhabitats. Inferences could then be made about box 

turtle motivations for movements within home ranges, such as behavioral 

thermoregulation and reproductive strategies. 
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Adult box turtles are said to have stable home ranges, the act of having similar 

home range sizes from year to year (Legler, 1960; Schwartz et al., 1984; Doroff and 

Keith, 1990). However, decreased annual stability in home range sizes has been observed 

in box turtles. Individual home ranges that exhibit annual variations in home range size 

are observed to have a loss in habitat quality and diversity (Stickel, 1950; Stickel, 1989; 

Madden, 1975). Habitat quality and diversity are negatively influenced by overcrowding, 

fragmentation, and destruction, decreasing the number of previous areas used for 

thermoregulation and foraging. Box turtles have been seen to increase their home ranges 

to encompass more quality habitat (Stickel, 1948; Madden, 1975; Stickel, 1989). Studies 

have also shown that turtle movements in severely disturbed and altered habitats remain 

within constrained home range areas, causing overcrowding (Doroff and Keith, 1990). 

Constrained home ranges as well as expansions of home ranges within a low quality, 

fragmented habitat can increase individual mortality rates. Due to high site fidelity 

observed in box turtles (Stickel, 1989), it is not surprising that individuals remain within 

severely disturbed habitats to mate, forage, and reproduce exposing themselves to altered 

climatic conditions and more subsidized predators. Turtles that expand their home ranges 

to encompass more quality habitat in turn may encounter higher road mortality. Pauley 

(1992) did a survey on road kills in West Virginia and found that almost 70 % of reptilian 

road kill were box turtles.  

To further strengthen my study, I would analyze annual home range sizes to see 

whether the observed interannual shifts were related to varying annual environmental 

conditions, such as precipitation. Additionally, I would explore whether habitat 

fragmentation, degradation, or destruction from natural and anthropogenic factors are 
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having an influence on home range sizes. Due to the limited knowledge about annual 

variations in box turtle movements, the need for long-term studies is emphasized (Somers 

and Matthews, 2006).  

Results of this study demonstrate the interrelatedness between elevational 

gradients, distances traveled, and home range sizes in box turtle movement. Previous 

studies suggest that thorough knowledge of box turtle natural history in conjunction with 

preferential habitat characteristics is imperative toward developing effective conservation 

efforts (Dodd, 2001; Rossell et al., 2006). Understanding the variations in home range 

size and population density throughout seasons and annually can be useful in the 

development of protection protocols for certain areas within the range of T. c. carolina.  

Box turtle habitats have little-to-no enforced protection (Somers and Matthews, 

2006). Currently, box turtle trade with other member nations is the only regulation set in 

place by the Convention on International Trade in Endangered Species (CITES) (Dodd, 

2001). Information on box turtle movements within home ranges will allow for informed 

decisions on size and location of protected habitats for box turtles by incorporating 

adjustments for movements in relation to thermoregulatory, foraging, nesting, and mate 

searching behaviors. To effectively stem box turtle population decline, Doroff and Keith 

(1990) suggest that 100ha areas should be set aside in habitats that are favorable to box 

turtles, excluding roads and individual collection. Other studies suggest that the 

established area of protected land should take into account the seasonal variation of home 

ranges and seasonal activity (Donaldson and Echternacht, 2005). 

In conclusion, it is vital to study movement behaviors of individual populations 

across T. c. carolina’s range as it contributes to a greater understanding of their natural 



45 

 

history and importance within ecological communities (Somers and Matthews, 2006). 

Additionally, natural history lays the groundwork for future ecological and behavioral 

studies and can be utilized toward the development of box turtle conservation 

management plans. These plans include well informed decision-making for potential 

protected habitats in relation to box turtle movements and behaviors (Morrison et al., 

1992; Belzer and Steisslinger, 1999). 
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NATURAL HISTORY NOTES 

 

The following are noteworthy observations of T. c. carolina natural history 

throughout the study period. Box turtles, both tagged and untagged individuals, were 

witnessed copulating throughout the study. More frequent copulations were observed in 

the spring and fall. Spring copulations were observed earlier in the day (9-11am), 

whereas fall copulations were witnessed in the later part of the day (1-2pm). During the 

summer season two tagged male individuals (3 and 7) were observed burrowing in a 

damp mud pit at the base of the north-western slope aspect (the opposite aspect from 

which they were initially tagged) within 1 m of one another and adjacent to three other 

burrowed box turtles whose sexes were not identified. They remained within this mud pit, 

moving no further than 1 m, for an average of seven days. This observed proximity 

suggests that box turtles group together during particularly warm periods if favorable 

habitat is available as a means to thermoregulate. Additionally, this behavior supports the 

theory that box turtles are non-territorial due to their close proximity during these 

observations. During a flooding event at the study site in late July, box turtles were 

observed at higher elevations compared to the previous elevations at which they were 

usually found. 
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APPENDIX I. Tabular data for ANOVAs on distances traveled, elevation, and home range area across seasons and between sexes. 

Additionally, means ± 1Standard Error across seasons and between sexes for above parameters are included. 

 

 

Table 1. Mean  ± 1SE of home range area (m²), elevation (m), and straight-line distances traveled (√m) at utilized microhabitats across 

seasons, for all turtles, and between sexes for tagged T. c. carolina.

Season Spring Summer Fall 

Sex Male Female Turtles Male Female Turtles Male Female Turtles 

Home Range 

Area (meters²) 3546±448 5631±1644 4589±882 10949±2366 12013±3474 11481±1956 1554±450 2295±608 1924±377 

Elevation 

(meters) 195.1±2.9 190.1±3.3 192.6±2.3 200.2±2.9 192.1±2.9 196.2±2.5 196.1±3.2 186.1±2.8 191.1±2.7 

Distance Traveled 

(√meters) 5.18±0.3 5.80±0.6 5.50±0.3 5.09±0.2 4.68±0.4 4.88±0.2 4.09±0.4 4.26±0.6 4.18±0.3 
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Table 2. Univariate analysis of variance (ANOVA) including degrees of freedom, F-test, 

correlational coefficient (R) squared and probability (P) of variables measured, home 

range area, square root of distance traveled, and elevation across season and between 

sexes. Sources with asterisks (*) signify significant relationships. 

Dependant Variable Source df F R² P 

Home Range Area (m²) 
Season* 2 13.8 0.61 0.000 

Sex 1 0.7 - 0.409 

Distance Traveled (√m) 
Season* 2 5 0.39 0.019 

Sex 1 0.2 - 0.699 

Elevation (m) 
Season 2 1.5 - 0.247 

Sex* 1 9.8 0.43 0.006 
 

 

 

 

Table 3. Movements along elevations within seasons and between sexes for T. c. 

carolina. 

  
Spring Summer Fall 

 

df F P F P F P 

MaleXFemale 1 1.27 0.300 3.91 0.095 5.51 0.057 
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APPENDIX II. Figure and tables (ANOVA and mean ±1 SE) for microhabitat variables: relative humidity, soil and ground surface 

temperatures, canopy cover, shrub cover, and substrate.  

 

 

 

Table 4. Mean ± 1SE of relative humidity (%) , ground surface and soil temperatures (˚C), and canopy cover (%)  at microhabitats 

across seasons, for all turtles, and between sexes for tagged T. c. carolina.  

 

 

 

Season Spring Summer Fall 

Sex Male Female 

 

Turtles Male Female 

 

Turtles Male Female 

 

Turtles 

Relative Humidity 74.3±0.3 74.3±1.0 74.3±0.5 72.3±0.2 73.4±0.5 72.9±0.3 58.1±0.8 59.1±0.6 58.6±0.5 

Ground Surface 

Temperature (˚C) 27.9±0.3 28.4±0.4 

 

28.2±0.3 27.7±0.1 28.1±0.2 

 

27.9±0.2 23.6±0.3 24.0±0.6 

 

23.8±0.3 

Soil Temperature 

(˚C) 21.3±0.2 21.3±0.1 

 

21.3±0.1 20.6±0.1 20.7±0.1 

 

20.6±0.1 16.6±0.3 16.5±0.2 

 

16.6±0.2 

Canopy Cover(%) 88.9 74.2 81.5 93.4 80.2 86.8 88.4 86.7 87.6 
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Figure 15. Mean ± 1SE relative humidity at utilized microhabitats for male and female T. 

c. carolina across seasons. Ɨ ◊ 

 

 
Figure 16. Mean ± 1SE ground surface temperatures at utilized microhabitats for male 

and female T. c. carolina across seasons. Ɨ ◊  
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Figure 17. Mean ± 1SE soil temperatures at utilized microhabitats for male and female T. 

c. carolina across seasons. Ɨ ◊  
 

 

 

Table 5. Univariate analysis of variance (ANOVA) including degrees of freedom, F-test, 

correlational coefficient (R) squared and probability (P) of variables measured, home 

range area, square root of distance traveled, elevation, relative humidity, ground surface 

and soil temperatures across season and between sexes. Sources with asterisks (*) signify 

significant relationships. 

 

Univariate Analysis of Variance 

Dependant Variable Source df F R² P 

Relative Humidity (%) 
Season* 2 382.6 0.98 0.000 

Sex 1 1.8 - 0.199 

Ground Surface 

Temperature (˚C) 

Season* 2 98.3 0.92 0.000 

Sex 1 2.6 - 0.126 

Soil Temperature (˚C) 
Season* 2 450 0.98 0.000 

Sex 1 0 - 0.968 
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Figure 28. Mean ± 1SE canopy cover (%) for male and female T. c. carolina 

microhabitats across seasons. ᵠ 

 

 

 

 

 

 

 

 

 



58 

 

 

 

 

 

 

Figure 19. Shrub layer cover (%) use by male and female T. c. carolina across seasons. ᵠ 

 

 

 

 

Table 6. Shrub layer cover use (%) by male (M) and female (F) T. c. carolina and the 

average use for all turtles across seasons. 
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    (A)      

   (B) (C)  

Figure 20. Substrate (leaf litter, vegetation, and soil) use (%) by (A) all turtles, (B) male, 

and (C) female T. c. carolina across seasons. ᵠ 

 

Table 7. Substrate (leaf litter, vegetation, and soil) (%) use by male (M) and female (F) T. 

c. carolina and average use for all turtles across seasons. 
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